

Web GIS for Ground Water Resource Assessment and End User Participation in its Management – Case Study from Rajasthan

Introduction

Rajasthan in the Context of India

Rajasthan is the largest state in India with over 10% of its area but only 1.4% of its water resources

	Rajasthan	India	Rajasthan as % of India
Population (2001) (Million)	56.5	1,050.0	5.40%
Utilizable water resources (BCM)	32.9	2,300.0	1.40%
b. Ground water (BCM)	11.2	431.0	2.50%
Irrigated area (Mha)	7.7	105.0	7.30%

Vulnerability of Water Resources in Rajasthan

Source	Availability	Utilization
Internal	16.05	11.55
Total	33.94	24.21(70%)
Grand Total	45.09	39.78 (88%)

Note: (i) as of year 2008

(ii) units in billion cubic meters unless mentioned otherwise

(iii) Evapo-transpiration: 1500 -2500 mm p.a.

Water levels falling at alarming rate in most of the state Water quality problems due to geological reasons, municipal and industrial pollution

Ground Water Development over the Years

Voor	Annual Ground Water Resources			Stage of	Number of over
real	Recharge (mcm)	Draft (mcm)	Balance (mcm)	(%)	Total Blocks
1984	13,790	4,927	+ 8,863	36	12/237
1990	10,801	5,821	+ 4,981	56	44/237
1995	11,028	6,494	+ 4,535	59	60/237
1998	12,602	8,708	+ 3,894	69	41/237
2001	11,159	11,635	- 476	104	86/237
2004	10,383	12,991	- 2,609	125	140/237
2009	10,563	14,570	- 4,007	134	166/239
2011	10,829	14,843	- 4,014	137	172/243

Notified Blocks as on today : 34. Saline Blocks – 2

EU SPP Rajasthan- An Overview

Objectives

- State wide water sector reforms leading to sustainable and integrated water resources management
- Support PRIs in 11 districts for:
 - Equitable access to safe, adequate, affordable, sustainable drinking water
 - Conservation and replenishment of surface and ground water

Sector budget support of €80 mn from EU

- €73.5 mn for the government of Rajasthan implementation from 2007 till December 2013
- Remaining €6.5 mn Technical Assistance, Monitoring/Evaluation, Audits (EU contracted)

Time period 2007 – 2013 (extended up to Dec. 2015)

Problems in Ground Water Management

- Not aquifer based
- Fragmentation of management at Central/State level
- Poor coordination between water supply and water quality management programs
- Inadequate recognition of GW/SW connections
- Rules/regulations not aimed at preventing aquifer mining
- Decline in resources and emphasis on GW protection, especially monitoring programs
- GW departments are Dying-Organisational aspects
- Overlapping tasks GWD/ Water supply

Conceptualization of Rajasthan Ground Water Project

Project Objectives

- Computerization of historic ground water data,
- Interpretation of data and demarcation of the aquifer system in three dimensions
- Estimation of the aquifer wise groundwater resources and apportion to the level of village,
- Benchmarking of GW Monitoring network and recommendations for its optimization,
- DGPS Survey of monitoring wells for accurate position and RL establishment,
- Development of Web enabled GIS Application for the assessment and management of Ground water,
- Empowering the community to asses periodical ground water availability
- To equip ground water users / stakeholders with the necessary data, skills and knowledge to manage groundwater resources available in a sustainable manner.

Solution

Inputs Used

- Geographical locations of all existing ground water monitoring Wells with their RL values,
- Time series Water Level and Water Quality (1984 2011) Data of both GWD and CGWB,
- Exploratory well lithologs of both GWD and CGWB,
- Geophysical Survey Data Electrical Resistivity data, Interpreted Lithologs, Geophysical well logging data,
- Metrological Data (Rainfall only),
- Aquifer Parameters of both GWD and CGWB,
- Updated Administrative Boundary (state, district, block and village) and Demographic data as per Census of India and State,
- District wise Geological, Geomorphology and Ground Water Potential Zone Maps etc.,
- Guidelines of GEC and Published Annual Assessment Reports of the State Ground Water Department.

Data Entry, Validation & Evaluation

A Shap shot of Key well (WL) / Geophysical Data Entry Form

- For each type of input data, specific forms and formats were designed,
- Quality checks were adopted to ensure error free data entry into database

Basin Wise Thematic Maps

- Digital maps on following themes were prepared for systematic assessment of aquifers in a basin:
 - Geological, geomorphological, ground water potential maps,
 - Well (GMS and Exploratory) location maps,
 - Depth to water level, Water table elevation and fluctuation maps
 - Water quality maps (EC, Chloride, Fluoride, Nitrate) distribution maps
 - Depth to bedrock maps
 - Isopach maps for Unconfined and Confined aquifers (if present)
 - Multiple Vertical cross sections across the basin
 - 3D maps for panel diagram

Approach to GW Resource Assessment

- Appraisal of current methodology of RGWD carried out and suitable refinements suggested,
- All the ground water recharge and discharge data linked to corresponding spatial features,
- Overlay analyses carried for isopach, GWP and other thematic maps for computation of basin wise, aquifer wise and village wise ground water resources,
- Both static and dynamic ground water resources were computed at 250m grid cells that can be summarized to any boundary,
- Quickly replicable and standardized methodology finalized for computation of resources annually.

Approach to GW Resource Assessment

Approach to GW Resource Assessment

Limitations faced	Solution
All draft and recharge values were available at Block boundary level,	Actual location of wells preferred
Keeping in view the size of the state, no. of specific yield values was less and quite old (often >20 years),	Values need to be revisited as aquifers might have changed
Agriculture draft can be improved by using crop type distribution	Remote Sensing studies can help in crop mapping
Agriculture draft should be applied to agriculture field areas only and so be the domestic draft,	LULC map be used
Many new canals have come up resulting into rise of water table	Revised command area map be used
Some unusually high -ve fluctuation areas	Either more frequent or stabilized water level readings be taken

Static and Dynamic GW Resources- Rajasthan

(Aquifer wise)

Aquifor Nomo	Dynamic Resources *	Static Resources *	
Aquiler Name	(mcm)	(mcm)	
Basalt	207.21	629.95	
BGC	270.01	2,226.93	
Bilara Limestone	279.87	3,361.23	
Gneiss	469.08	2,353.74	
Granite	218.2	2,165.74	
Granite Jalore	53.05	512.09	
Limestone	246.39	1,064.26	
Nagaur & Jodhpur Sandstone	291.48	4,453.79	
Older Alluvium	5,712.20	199,826.99	
Parewar Sandstone	47.71	1,150.22	
Phyllite	461.29	3,231.78	
Quartzite	170.14	999.36	
Rhyolite	117.05	950.22	
Sandstone	873.9	11,423.80	
Schist	641.7	4,506.50	
Shale	120.74	224.07	
Tertiary Sandstone	534.61	17,965.53	
Ultra Basic	2.06	18.96	
Younger Alluvium	3,309.13	154,029.76	
Total	14,025.82	411,094.93	

Achievements

- All the relevant historic ground water related data possessed by Department is digitally available for scientists,
- The Department now has large number of GIS software licenses and those for ground water study (like: Rolta Geomatica, Surfer, Aquachem, RockWorks, Visual Modflow) for quickly derive analytical results,

Achievements

- CGWB and GWD data integrated through implementation of GEMS at GWD,
- Training on all the softwares has been imparted to GWD scientists for carrying out GIS based mapping and analysis,
- GW resource can now be computed very quickly, accurately and annually,
- All the data and maps are in public domain,
- Village user groups and stakeholders can compute the available GW resources as on date by just inserting the water levels and also get to know the balance and its sufficiency for different purposes till next monsoon. This will help them in better planning the scarce ground water that is available in hand.

Final outcome of the project implementation -One Point based Web GIS Solution

Link: http://gwd.rajasthan.gov.in

Detailed navigation on the first page

	2	3	4
✗ Know RGWD	➢ Know RGWD	✗ Know RGWD	
About RGWD	➢ Publications/Reports	➢ Publications/Reports	
Organization	Machine Power/Man Power	∛ Notices	➢ Notices
Vision	Annual Reports	Tenders	✗ MIS Reports
Objectives	Brochures/Reports	Circulars	Well Summary Report
Functions	Ground Water Standards	Forms	Block Wise Summary Report
Achievements	¥ Notices	Guidelines and Policies	Basin Wise Hydro-geological Information
Projects	✗ MIS Reports	✗ MIS Reports	Water Quality Charts

RTI

Contact Us

Publications/Reports
 Notices
 MIS Reports

Login Module

🕓 Log	<i>j</i> in
User ID:	
	Remember me next time. Log in Forgot Password
Guest U	ser Request Access
New	VS

GISLayer Organization and Legends

Search Functionality – Menu Based

Locate Ground Water Monitoring Stations Based on Agency	80 E ×	Locate Ground Water Monitoring Stations Based on Well Type 😦 😧 🔳 🗙
District Ajmer Block Arain Agency RGWD Search Reset	1	District Ajmer Block Arain Well Type D/W D.C.B Searc D/W Reset P/Z T/W Locate Village/Town Q D X
Searches Metadata	on Agency 1	Distname Ajmer Blockname Arain
Locate Ground Water Monitoring Stations Based of Locate Village/Town	on Well Type 2	Villagename Aau Adeda Adeda Ahera
Locate Block Headquarters Locate Major Aquifers	4 5	Ajba Ka Bariya Ajgara ≣ Ajgari
Locate Major Aquifers	Locate Block Heado	Ajmer (M Cl) Akhri Akrol Alamboo
Aquifer Nagaur & Jodhpur Sandstone Older Alluvium Parewar Sandstone Phyllite	District	Bhilwara Alipura Bikaner Almas Bundi Amali Churu Amali (Jooniyan) Show Selected Amarpura
5 Search Reset	Headquarter Like Equal Like Not Li Null	Amarpura (Akrol) Amarpura (Kali Kankar) Amarpura (Kali Kankar) Amarpura (Khera Kalan) Amarsingh Ka Badiya Amba Maseena Ambapura Anakar Andhi Deori

Village Resource Tool – Scenario 2

Gallery 🐼 FAQ 🕈 Ground Water Facts
istrict: BUNDI 🕑 Block: HINDOLI 🕑 Gram Panchayat:(Optional)Select 💙 Village: BASNI
Are-Monsoon Depth to water level (mbgl) : 13.5 (Please enter the depth to water level as on 15th June) Dost-Monsoon Depth to water level (mbgl) : 13.0 Date: 08/12/2013 Compute Resources
Ground Water Quality: Not Suitable for drinking purpose due to high fluoride content
Ground Water Resource: 21000.00 cubic meter of dynamic ground water resource is indicated in your village as of 12-Aug-2013.
Domestic Water Requirement as per available / current population (based on census-2001 and @ 40 lpcd) till next monsoon (15th June 2014): 22202.24 cubic meter will be required.
Deficiency of Ground Water for Domestic Purpose as per current population (Census – 2001) @ 40 lpcd till next monsoon (15th June 2014): <u>1202.24 cubic meter</u>
You are going to withdraw static ground water resource. It is very-limited and it is very important to keep the reserve for Drought period. Thus ground water should not be utilized for other purposes.
Please encourage rain water harvesting in your village by making use of Tanka's etc.
Ground Water Balance Available for other uses till next monsoon (15th June 2014): <u>Not</u> <u>Available</u>

Charts

Accessing Atlas Library

Published Reports

		🔍 🤍 🖑 🚯 💓 汪 🐺 🗎 🚥 💋 💵 🔮
Technical Report(1)	:	Review and Evaluation of Existing Data and Information.
Technical Report(2, A)	:	Strategy for GIS creation and Recommendation for SW/HW /DB / GIS and RASA Tools.
Technical Report (2, B)	:	Hard copy of GIS Maps - District Wise (Base, Geomorphology and Ground Water Potential Zone Maps).
Technical Report (3, A – Part 1)	:	Review of the Existing Methodology, Practices and Status of Ground Water Resources Assessment.
Technical Report(3, A – Part 2)	:	Hydrological unit wise 3D demarcation of aquifers and Preparation of aquifer wise isopach maps.
Technical Report (3, B)	:	Onetime Assessment of Groundwater Resources, Draft and Balance.
Technical Report (4, A)	:	Aquifer Wise Apportion Of Groundwater Resources at Village Level.
Technical Report (4, B)	:	Training Modules for various level of Ground Water Professionals.
Technical Report(4, C)	:	Mechanism for Collection of Requisite Data and Parameters at Community Level for Seasonal Assessment of Ground Water Resources.
Technical Report (4, D)	:	Appropriate Strategies and Action Plan for Strengthening Local Institutions and End Users for Ground Water Management.
Draft Final Report	:	Draft Final Report
Final Report	:	Final Report
Benchmarking		
Technical Report (1)	:	Review and Evaluation of Existing Ground Water Monitoring Networks for water level and water quality.
Technical Report (2)	:	Optimization of Ground Water Monitoring Network for water level and water quality.
Technical Report (3)	:	Mechanism for Integration of GWD and CGWB Data.
lechnical Report (4)	:	I raining Modules for various levels of Ground Water Professionals.
Draft Final Report	:	Draft Final Report
Final Report	:	Final Report

Road Ahead

- Computerization of all the district offices,
- Improving the distribution and accuracy of parameters for GW assessment,
- Synergy and interaction with other water related departments within State and Centre
- Continuous learning and enhance of skills
- Involvement of village level stakeholders through awareness raising campaigns

THANK YOU.....

"Not only the Thirsty Seeks Water..... the water as well Seeks Thirsty"-Rumi.

Additional slides (if required)

A typical basin approach walk through - Banganga basin

BANGANGA RIVER BASIN - Topography

BANGANGA RIVER BASIN - Aquifer Distribution

Pre-Monsoon Depth to Water level (2000-09)

Water level fluctuation (Pre-Post Monsoon, 2010)

Average Ground Water EC (Pre-Monsoon 2005-09)

Thickness of Unconfined Aquifer

Thickness of First Confined Aquifer

Thickness of Second Confined Aquifer

Depth to Bedrock

Hydrogeological Cross-sections

3D Aquifer Model

Monitoring Network Strengthening

- DGPS survey for establishment of sub-meter accurate X, Y and Z of more than 8000 wells,
- Geostatistical techniques in GIS were used for carrying out benchmarking and optimization of monitoring network,
- Separate analysis for water quality and water level have been carried out at sub-aquifer level,
- Recommendations for both reduction network of wells in areas where possible and strengthening in other areas made. Use of AWLR/DWLRs also made,