ST 4 AR e-Governance vis-à-vis e-Agriculture

Global Focus on Agriculture

2016 – International Year of Pulses

Dr. Borlaug's last words: "Take it to the Farmer"

The Greatest **Challenge in Human History**

> **Sustainably** Feeding 9 Billion **People by** 2050

Food & Agriculture: Rising Demand & Declining Supply

· World population projected to reach 9bn by 2050. Experts say global food production will need to increase by as much as 70% China India & US alone comprise > 40% of the global population and arable land is decreasing in all three countries.

1999

India

2009

China

World Food Supply: We will have to double it by 2050

· Global middle class will grow by 3bn people over the next 20 years

Investments in agricultural commodities serve as inflation hedge

Rising incomes in Asia will drive food consumption

- 80% of future growth must come from lands already in use
- Most of the production growth must occur in countries where it is consumed
- Limited potential for land expansions, except in the Americas and Sub-Saharan Africa
- Irrigation expansion crucial to meeting food demand

National Agricultural GDP

Farmers' Challenges

Small Farmers: The Core of Indian Agriculture

- 17.6% of the world's human & 15% livestock population and counting
- 4.2% of the world's water
- 2.4% of the world's area
- 142 m ha cultivated & 63.6 m ha net irrigated
- 140% cropping intensity
- 52% of population earns livelihood in agriculture
- 13.8% contribution in GDP;
 14.1% earning of total exports

Total Land	328.7 mha	
Forest Area	70 mha	
Misc. Tree Crops	3.4 mha	
Agricultural Land	182.5 mha	
Degraded land	59.3 mha	

Food Grains	265 mt
Horticulture	269 mt
Pulses	19 mt
Milk	132 mt
Fish	9.5 mt
Eggs	70 b
Meat	5.9 mt

Holdings & operated area, %

SMALLHOLDERS PRODUCE 80%

OF FOOD CONSUMED IN DEVELOPING COUNTRIES

OF CHILD LABOURERS WORK IN AGRICULTURE

49.5%

OF THE WORLD LIVE IN RURAL **A R E A S**

World Map of the Global Climate Risk Index, 1993-2012

Climate Risk Index: Ranking 1993 - 2012

Pressures on Natural Resource Base

(million ha)	
Land degradation	107.43
Water erosion	57.15
Degraded forests	24.90
Wind erosion	10.46
Salt-affected	6.32
Acid-affected	12.00
Others	8.60

Agricultural Lands & Dietary Patterns of the World

Cropping Pattern – Past, Present & Future

Changing Consumption Pattern

Increasing non-grain crops and animal products in daily nutritional intake

Global Trends: Observed Rates of % Yield Change Per Year

Rate of Yield Change (percent/year)

Rate of Yield Change (percent/year)

Space Applications in Agriculture

- India making significant progress in space technology
- Space technology is being used in various fields such as like defense, medicine, agriculture, water conservation and weather forecasting
- Satellite sensors provide valuable database to arrive at suitable decisions in maintaining productive capabilities of agro-ecosystems
- At present India has nine remote sensing satellites making it as one of the largest constellation of remote sensing satellites in the world

Space Technology and ICAR

- First remote sensing (RS) experiment in country (1969) on coconut wilt disease in collaboration with ISRO & NASA
- ISRO–ICAR Joint experimental programmes (JEP) since 1980s on Optical and Microwave RS
- RS & GIS courses (1980s) in PG Programmes of NARES
- Application in NRM, Crop Sciences, Horticulture, Fisheries and Animal Sciences

Applications in Agriculture

- Crop and Land use Planning, Soil and Water Conservation and Agroforestry Mapping
- Satellite sensors provide valuable database for suitable decisions in maintaining productive capabilities of agro-ecosystems including fisheries
- Surveillance of pests and diseases in crops and animals

NBSS&LUP The Nodal Institution

Data Collection, Sharing, Management and Integration

- Soil Resource Database at different scale
 - Benchmark sites (1:1 M scale)
 - State level (1:250,000 scale) under SRM
 - District level (1:50,000 scale)
 - Farm level (1:12,500 scale)
- Agro-Climatic database
- 4 Soil Spectral Data

Current Research on Space Technology for Agricultural Research

• Mapping and Yield Modeling of different Crops

- * Spectral signature library of different crops and soils
- * Research on crop discrimination techniques for mapping,
- * Remote sensing based hybrid yield modeling
- * Cropping systems analysis
- * Crop biophysical parameter retrieval
- * Mapping agroforestry areas

Crop Growth Condition Monitoring

- * Evaluation of Remote Sensing indices for crop health, agricultural drought
- * Indices for pest and disease infestation
- * Indices for water, terminal heat and nutrient stress
- * Vulnerability assessment for drought and climate change

Resource Monitoring and Mapping

- * Soil Mapping at 1:50000 scale
- * Land Degradation Status Map @ 1:50000 scale
- * Land Use and Land cover and Change detection
- * Watershed delineation, prioritization and development
- * Crop water requirement in canal command
- * Irrigation Command Area assessment

Mapping for **Planning**

Space Data Management and Integration

Mapping Agro-Ecological Sub-region (AESR)

Plateau and North Western Telangana Plateau, hot moist semi-arid ESR with shallow and medium loamy to clayey Black soils (medium and deep clayey Black soils as inclusion), medium to high AWC and LGP 120-150 days [K4Dm4].

19.1

6.2

North sahvadris and Konkan Coast, hot humid ESR with medium to deep loamy to dayey mixed Red and Black soils, medium to high AWC and LGP 210-240 days [E6B8].

Gujarat divided into 5 AERs and **9 AESRs depending on the** Length of Growing Period (LGP) and Soil Properties

GUJARAT

MADHYA PRADESH

AGRO- ECOLOGICAL

MAHESAN

SUBREGIONS

Natural Resources Assessment & Management

WATERSHED ATLAS OF INDIA (ON 1:1 MILLION SCALE)

Potential exists for sequestering 10-14 Tg C yr⁻¹ in India (Lal 2004)

Satellite Data in Watershed Management

- Quick assessment of watershed health and forecasting crop health based on satellite data and Surface Energy Balance Algorithm (SEBAL)
- Appraisal of the natural resources status (including areas prone to degradation) for prioritizing areas that need urgent attention
- Watershed delineations, preparation of various thematic maps
- Assessment of impact of climate change on water demands

<u>LUMPED MODELS</u> - No account of spatial variability of processes, input, boundary conditions, and system geometry

DISTRIBUTED MODELS - Explicit account of spatial variability of processes, input, boundary conditions, and watershed characteristics

Land Degradation and Wastelands Information System

ICAR-NASS joint Publication

Digital Elevation Model

Cartosat-1 Merged LISS 4 Image

Understanding the Land Features

Use of Digital Elevation Model and Cartostat-1 merged LISS 4 image for mapping of Undulating Terrain on 1:10000 scale

(Use of CARTOSAT and RESOURCE SAT)

Use of High Resolution Cartosat Merged Satellite Data in Land Resource Inventory

Satellite data

- Land Use / Land Cover
- Digital Surface Model (DSM)
- Online interpretation tools for preparation of base map

NICRA on the move....

Achieving Climate Resilience in Agriculture

About 60% of India's Agri Land is Rain-Dependent...

580 Contingency Plans

Information on climate critical for agriculture

Convergence and Continuum

Potential synergies and trade-offs among food production, mitigation, and adaptation

- countries, farming systems, or agro-ecological zones
- The size and overlay of the dircles do not represent either relative potential or degree of overlap. 3. The term "adaptation" refers to approaches and capacities within agriculture, and does not include "resting out of familie, "which may be the most effective adaptation to climate change for families in particularly vulnerable contexts.

National Agricultural Drought Assessment & Monitoring System

Moderate Drought

Severe Drought

Integration with ground data

District/ Sub-District Level Drought Monitoring

ATLAS on Vulnerability of Indian Agriculture to Climate Change

Central Research Institute for Dryland Agriculture

(Indian Council of Agricultural Research) Santoshnagar, Hyderabad - 500 059

District Level Vulnerability Maps

- District level vulnerability atlas for agriculture
 - District level sensitivity factors mapped and opportunities for investments on technology and infrastructure provided for adaptation and mitigation
 - User NABARD for funding projects under global adaptation fund

ulnerability of Indian Agriculture to Climate Change

> Medium High Verv High

Vulnerability mapping done at district level with IPCC protocol of exposure, sensitivity and adaptive capacity

District Level Vulnerability Mapping

Soil Resource Mapping (SRM) of different States (1:250000 scale) and the Country (1:1 million)

Soil

Map

False colour composites (FCC) of Landsat MSS and IRS-1A/1B data were used to prepare physiography and soil maps of different states of India on 1:250000 scale and Union **Territories**

District Level Soil Resource Mapping on 1:50000 scale

IRS-LISS III sensor data from Indian Remote Sensing Satellites used for mapping of landform and soils

Use of Geo-informatics in Soil Nutrient Mapping for 300 Districts

- Soil Nutrient Status Mapping on the basis of intensive soil sampling at 1-2 km grid interval was carried out in Tripura, Jharkhand, Assam and West Bengal states for site specific fertilizer recommendations
- On the basis of such data, web-based decision support system for farmers advisory was developed for the state of West Bengal

GPS & GIS Based Soil Fertility Maps of India

GIS based soil fertility maps of Nasik District of Maharashtra

Parameters: pH, EC, organic carbon, N, P, K, S and Micronutrients (Zn, Cu, Fe, Mn, B) have been generated for 170 districts spread across 19 states

Snail Shell Powder extracted from Giant African Snail

Carrier material for biofertilizer

Geo-referenced Soil Fertility Mapping

Multiple nutrient deficiency in intensively cultivated areas

Soil Information Systems

Spatial thematic database generated at state level

Crop Suitability Mapping at State level

Harmonization of Degraded/Wastelands of India

- Soil Information System (1:1 M scale)
- **4** State wise soil Information System (1:250,000 scale)
- Soil loss information system (1:250,000 scale)
- Degraded and wastelands database (1:250,000 scale)
- Acid soil information system (1:250,000 scale)
- District level soil survey data (45 districts)
- Farm level soil information system (12,500 scale)
- **4** Soil-Climatic Database
- Soil Spectral Data

Soil Degradation Mapping

Harmonization of degraded lands and waste lands of India

Space-based satellite technology (Landsat /IRS data) used to map and assess the status of soil degradation in the country

Total area 120.41 million ha (NAAS , 2006)

Estimated Soil Loss under Different Land Use Systems

Fig. 7

Estimated soil loss

Estimated soil degradation

Source : Soil Erosion in Goa, NBSS&LUP Publ. No. 155 (2013)

Source : Soils of Goa for Optimising Land Use, NBSS&LUP Publi2No. 74 (1999)

Mapping Saline Soils for Reclamation

Reclamation of ~7m ha of salt affected soils for increased nutrient use efficiency and productivity

> Salt Affected: 6.73 m ha

Mapping Acid Soils for Enhancing Productivity

Strongly acidic	pH<4.5	6.2 m ha		
Moderately acidic	pH<4.5-5.5	24.4 m ha		
Slightly acidic	pH<5.5-6.5	62.1 m ha		

- About 12 m ha of arable acid soils with pH<5.5 have low nutrient use efficiency and crop productivity
- Liming to enhance nutrient use efficiency and productivity of crops, especially of pulses and oilseeds
- The practice saves 50% fertilizers

Forecasting Agriculture Output using Space, Agromet and Land based observations (FASAL)

Nationwide Multiple Wheat & Rice Crop Forecasting

- In-season Crop Forecasts
- Impact of Drought & Flood Assessment
- Early Warning Crop condition & Stress Scenario
- FASAL Centre /NCFC with Ministry of Agriculture

Pre-harvest Production Forecast at National, State and District levels for Major Crops like Paddy, Wheat, Sorghum, Rapeseed, Mustard, ...

Forecasts

Crop	Year	Acreage (mha)	Production (mt)
Rice	2008-09	35.97	78.37
Rice	2009-10	31.31	64.65
Wheat	2008-09	26.96	73.59
Wheat (2 ^{et}	2009-10	28.19	80.01

Econometric Models

ligt onnet Model

Spectral & Agromet Models

Econometric Models

Biodiversity: The Treasure

Collection sites from NEH under Special Exploration Mission (2011-14)

Agro-biodiversity

Biological Richness

Geo-informatics studies of PGR

Digital Mapping of Weeds in India

- Assisted in generation of weed maps for some of the states based on the data provided by NRCWS, Jabalpur
- The maps at state level for on groundnut, rice, wheat crops was generated showing degree of infestation of different weeds

- Haryana
- 🔸 Punjab
- Andhra
 Pradesh
- Assam
- **4** Chhattisgarh

- Arunachal Pradesh
- Nagaland
- Maharashtra
- Meghalaya
- Mizoram

Acreage and Production Estimation of Potato Using Remote Sensing, GIS and Crop Modelling

- ISRO Collaboration
- INFOCROP-POTATO simulation model

ì											
	Masters Project	ect] Results	Validation	Weather Conversion	View Files	Chapge Pacsword	Window Heln	Credite	Disclaimer	Close	
ł	Masters Project	Results	Valluation	weather conversion	VIEW Files	Change Passworu		Creaks	Discialmen	Close	
	InfoCrop - [Proj Masters Project Crop Name Date of Start of Simulation User Name Vield Regulation Variety Location Year Sowing Irrigation Nitrogen Organic Mat Climate Cha Pest (Click on the desired fact Total Treatments Selected Treatment Project Window	ect) Results Pro Factors Teactors torto vie 25 0	Validation ject v details) Review Review	Weather Conversion Simulation Res Treatments Project Title Crop Name Date of Start of Simulation Stop Simulation after Please provide tt in your project (the default is se nitrogen, organic Variety Variety Variety Variety Optimal te Maximum Sensitivity GROWTH	View Files ults from Simula Potato 07 0 200 to calcul matter a 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Change Password InfoCrop Ition Results from Ctober + (days) Print r of treatments for ate potential yield rd pest) V Sowing 1 V Irigation 1 Nitrogen 1 Ok 6 Detriod	Window Help InfoCrop ing Interval r the factors y d with no cons d with no cons	Credits	Disclaimer		·
	Simulation Contro Treatment Select Execute Current I	ol Optio ion Mat Project	<u>ns</u> rix >>	Note: for changi link provid	ng the det led at the	fault variety parar top	meters please	use the	'Masters:	≻Variety	Master'
	Validation		L								
										Close	Window

AWiFS image from IRS-P6 satellite showing potato crop distribution in Punjab

Productivity of different potato cultivars under baseline and changes in future climatic scenario in Punjab

Prediction of suitable area for Dashehari and Alphonso mango

Projected areas suitable for producing two *aonla* harvests in a year

Areas suitable for introduction of litchi germplasm from exotic sources

Animal Epidemiology and Disease Identification

Mapping of Disease Prevalence

Spatial Cluster Analysis

Focus on Coastal Ecosystem of India

- A large number of applications requires data from ocean color sensors, few such applications are:
- Fisheries Research for potential fish zone forecasting
- Ocean optical properties
- Primary and new production in oceans
- Algal bloom detection
- Coastal Processes
- Coastal pollution

- Home of ¹/₄th of the world population
- Cover 5.5 % of the country's TGA
- Current urban population is 220 million.
- Major States in East Coast: West Bengal, Orissa, Andhra Pradesh, Tamil Nadu & Pondicherry
- Major States in West Coast:
 Maharashtra, Goa, Karnataka, Kerala,
 Gujarat, Diu & Daman
- India has two distinct major island ecosystems: the Andaman and Nicobar group of islands and the Lakshadweep

m-Krishi Fisheries Advisory Service

- Provides oceanic wind
 speed and direction
 advisories 4 times daily and
 5 days in advance
- PFZ advisories 3-4 days in advance
- Advisory being mobile based, ensures continuity and dependability in reaching the fishermen
- Saves fuel and time

(BS P4 0.024 derived obiorophy) a image im erabin Sea and Day of Baogal. Differ obiorophy) a concentration in an them furtion Sec is waveleted with evider realing plennmenon, tenting to autient traitement of upper surface tays in deep cean. Some scale also plenns in also seen in Rey of Bargal, carerjing out of Hairmediadwin debi. (Jana fung http://doi.org/10.0001). (http://doi.org/10.000)

Agro-advisories: Real Time Weather Data

Pilot testing of customized agroadvisories at village level through SAU-KVK interface based on real time feed back- 25 AICRPAM centres and KVKs

AWS installed at Hayatnagar Research Farm (HRF), CRIDA

100 AWS installed in KVKs for collection of Real time weather and crop data for modeling and agro-advisories

'Reaching the Unreached' Use of ICT: Web-based Agro-Advisories

- e-Connectivity hub for 192 KVKs and 8 ZPDs
- Comprehensive Weather-Crop-Market Advisories
- KVK Mobile Advisory Launched by
 H.E. Governor of Karnataka, 2010

'Reaching the Unreached' Use of ICT: Web-based Agro-Advisories

- Satellite-based e-Connectivity hub for 192 KVKs and 8 ZPDs
- **Real-time Weather Advisory**
- Comprehensive Weather-Crop-Market Advisories
- 🖶 Community Radio

SMS Portal for Farmers

100 AWS installed in KVKs

Opportunity: Skill Development

2012

2050

India 2050: 50-50

Source: UN 2011

ICAR Collaboration with other Ministries/Departments

DAC	Seed, Farm mechanization, Climate Resilient Agriculture		
DAHD&F	Feed & Fodder, Diagnostics and Vaccines		
DBT	Molecular Breeding and GM Foods		
CSIR	Secondary Agriculture		
ICMR	Health Foods and Zoonotics		
DRDO	High Altitude Agriculture		
MFPI	Agri-processing and Value Addition		
MoEF	Climate Change, Global Warming		
MoES	Medium range Agro-advisory services		
DoS	4 Monitoring of Natural Resources, Crop Acreage & Yield Forecasting		
MHRD	Higher Education and Skill Development		
MoRD	Fechnologies for convergence with MNREGA		

Flagship Programs

- Development of Soil Resource Inventory
- Basic and Strategic Research in Pedology, Agro-ecological Regionalization and Land Use Planning
- Land Evaluation and Land Use Planning for Rational Use of Land Resources
- **Human Resource development**

Need of the hour

- Data Integration (Soil with Crop)
- Land Resource Assessment for climate resilience
- Assessing the Carrying Capacity of the Ecosystems

Way Forward in Space Technology for Agriculture

Land Resource Inventory and Land Use Planning

Land Resource Inventory (1:10000 scale)

Data Integration : Socio-economics and scientific land use planning in GIS environment

Site Specific information on soils and situation specific recommendations

Improved Resource Inventorying & Monitoring

- Digital soil mapping : 1:10000 scale
- Modelling for prediction of land/soil degradation
- Inputs for generation of soil health cards
- Monitoring soil quality/land degradation
- Stress on arable land and its management

Way Forward in Space Technology for Sustainable Agriculture

Altitudinal Shift in Apple

Animal Migration

- Monitoring and forecasting tools of crop conditions for
 - * Pest & Disease Surveillance Crops and Animals
 - * Temperature, water and nutrient stress on crops
 - * Value added improved agro-advisories
- Improving coastal agriculture
- Management decision and effective dissemination tools for enhancing input use efficiency
- Conservation agriculture/ crop residue management
- Carbon sequestration in different agricultural land use management scenarios
- Potential Fish Zone mapping and timely forewarning; including marine turbidity and algal blooms

Precision Farming

Way Forward in Space Technology for Agriculture

2	Central Agricultural Universities	١.
107	Research Institutes incl. 4 Deemed Universities	
641	Krishi Vigyan Kendras (KVKs)	
65	State Agricultural Universities	
78	AICRPs & AINPs	

nstitutional Linkages:

ISRO, NRSC, SAC, MoES, MoEF, ICAR, DST

Good Governance Day – 25 December 2014

(Salient points on e-Governance in DARE/ICAR)

- e-Governance for transparency and efficiency
- e-Office introduced
- e-procurement
- > Online RTI
- CCMS (Court Case Monitoring System)
- VOICE (Vigilance Online Integrated Complaint & Enquiry)
- Biometric Attendance System
- Online monitoring of Result Framework document (RFD)
- GHMS (Guest House Management System)
- Rice Knowledge Management Portal (RKMP), http://www.rkmp.co.in
- Microbial Genetic Resource Portal, http://www.mgrportal.org.in/
- Knowledge Innovation Repository Of Agriculture In The North East, http://www.kiran.nic.in
- > e-Learning Portal On Agricultural Education (*e-KrishiShiksha*), http://ecourses.iasri.res.in
- e-Publishing And Knowledge System In Agricultural Research, http://epubs.icar.org.in
- Consortium For e-Resources In Agriculture, http://cera.iari.res.in
- Krishikosh, <u>http://krishikosh.egranth.ac.in</u>
- Agropedia, http://www.agropedias.iitk.ac.in
- ICAR Website, <u>http://www.icar.org.in</u>
- ICAR YouTube Channel <u>http://www.youtube.com/user/icarindia?feature=results_main</u>
- *Kisan* Mobile Advisory
- Caneinfo, http://caneinfo.nic.in
- Facebook page of ICAR <u>www.facebook.com/InAgrisearch</u>

Currently 147 institutions in NARES have 24x7 online accesses to agricultural research journals on CeRA platform through IP authentication

Smart Farmer ?

- Data
- Studies are project based
- ST Farmer friendly
- ST on hand-held gadgets

- Farmer's Interest
- Acquaintance
- Climate Smart Villages
- PPP
- Community Radio
- My Village, My Pride

• Scale-up

Suitable areas for organic farming

Sustainable Intensification

Catering to the Needs -FARMERS

DIAG would look after DIP across Centre and states.

 The digital India programme aims to connect all gram panchayats by broadband internet, promote e-governence and transform India into a connected knowledge economy.

● Key ministries to have "nodal officers" who will be made responsible for ensuring smooth implementation of the over-₹1 lakh-crore ambitious programme.

 Chief Information Officers to supervise its the implementation in 10 ministries. • Department of Electronics and Information Technology to create four senior positions within the department for managing Digital India

 There would be a "Digital India Advisory Group" (DIAG), to be headed by minister of communications and IT Ravi Shankar Prasad.

 DeitY would provide its advice during the appraisal of the projects covering issues relating to adoption of standards, utilisation of cloud, mobile platform.

Transforming Indian Agriculture - GeoAGRI

Investments in Ag R&D - High Returns

	China	India	Thailand	Ghana	Uganda	Tanza	nia Ethiopia	
	Returns to Agriculture or Rural income (local currency/local currency spending)							
				- , ,		0/		
Agric. R&D	6.8	13.5	12.6	16.8	12.4	12.	5 0.14	
Education	2.2	1.4	2.1	-0.2	7.2	9	0.56	
Health	n.e.	0.8	n.e.	1.3	0.9	Share	e of TFP in	
Roads	1.7	5.3	0.9	8.8	2.1	Crop Output < Growth: <		
Ranking in returns to poverty reduction 17-32%							7-32%	
Agric. R&D	2	2	1	n.e.	1	2	n.e.	
Education	1	3	3	n.e.	3	1	n.e.	
Health	n.e.	4	n.e.	n.e.	4	n.e.	n.e.	
Roads	3		2	n.e.	2	3	n.e.	

Public Agricultural Research Spending

% Research Spending of Ag. GDP: Asian Countries

Spending in African Countries					
South Africa	2.18%				
> Kenya	1.21%				
Malawi	1.03%				
> Ghana	0.69%				
> Africa	0.51%				
Latin American & Caribbean					
> Brazil	1.52%				
> Mexico	1.15%				
> LA & C	1.10%				

(Source: GFPR 2014)

Spending on Ag. Research (mUS \$)

'I' factor for New Agriculture in India

- Information for agriculture
- Innovations in agriculture
- Inputs management
- Incentives for agriculture
- Investments in agriculture
- Institutional infrastructure

smart farming 4 small farmers

Appropriate geo-referenced information on physical and socio-economic resources for agriculture in the broadest sense (including fisheries and forestry) of substantial value in the analysis of economic feasibility and environmental accessibility of agricultural and rural development and food security programs

हर कदम, हर डगर किसानों का हगसफर भारतीय कृषि अनुरांधान परिषद

Agrésearch with a Buman touch

Digital ICAR: Geo-portal http://krishi.icar.gov.in

